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Abstract 

Organ rejection is a dangerous medical complication that can occur after an organ transplant. 

Currently, all transplant patients are prescribed life-long immunosuppressors to decrease the risk of 

organ rejection. However, these medications can increase the susceptibility to other infections and 

cancers. Human leukocyte antigen (HLA) mismatches between donors and recipients can initiate T-cell 

activation, which is known to be the primary mediator of organ rejection. However, HLA genes are very 

polymorphic, and classifying “whole” HLA mismatches does not account for the minor amino acid 

differences that can start rejection. One solution is to create a machine-learning model that can analyze 

donor and recipient HLA sequences to predict MHC-peptide complexes, which are the molecules that T-

cells recognize to start an immune response. This information can be used to predict rejection and find 

precise targets for immunosuppression. The project used datasets with MHC class I-peptide binding 

information to analyze donor and recipient HLA sequences. The result is that the model can accurately 

predict MHC-peptide complexes and rejection targets, with an 𝑅2 value of 0.723. In conclusion, focusing 

on MHC-peptide presentation can account for HLA polymorphism and is more accurate in predicting 

organ rejection. Additionally, this data can be used to administer personalized and targeted 

immunosuppressors or decrease the need for broad immunosuppressors altogether. In the future, a 

similar model can be developed to predict antibody-mediated rejection (AMR) using MHC-class II 

datasets and be modified to support other organ transplants. 

Keywords: Organ rejection, immune system, antibodies, cytokines, T cells, machine learning  
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Selective T-Cell Inhibition Using Precision Medicine to Prevent Organ Rejection 

Organ transplants are among the greatest advances in modern medicine, saving tens of 

thousands of lives every year. By increasing life expectancies and improving the quality of life, they 

remain the best therapy for terminal and irreversible organ failure (Grinyó, 2013). However, there is 

currently a major problem in the organ transplant industry: the demand is vastly greater than the 

supply. Due to a lack of organ donations, about seventeen people die each day while waiting for an 

organ transplant (Organ, Eye and Tissue Donation Statistics, n.d.). The immense demand emphasizes 

that every donated organ has the potential to change lives, and it is crucial to maintain the long-term 

health of each organ for the sake of the patient and the organ as well. 

Overview of Organ Rejection 

 Even if a patient is successful in receiving an organ transplant, many medical complications may 

occur after the transplant, the most common being organ rejection. The immune system is a body 

system that destroys foreign cells to protect the body from harm. In the case of organ rejection, the 

immune system recognizes the transplanted organ as foreign and attempts to attack it by producing 

cells or antibodies that invade the organ (Understanding Transplant Rejection | Stony Brook Medicine, 

n.d.). Currently, all transplant patients are prescribed immunosuppressors to decrease the risk of organ 

rejection. However, recipients must take immunosuppressive drugs for their entire lives for their bodies 

to accept a donated organ. While these medications prevent organ rejection to an extent, about 10-20% 

of patients will still experience at least one episode of rejection within the first three months to one year 

after a transplant (Organ Rejection after Renal Transplant | Columbia Surgery, n.d.). Additionally, they 

can also severely weaken the immune system, increasing the risk of cancer, infections, and other 

diseases (Kelly, 2022). New treatments are necessary to prevent organ rejection without using broad 

immunosuppressors that weaken the entire immune system. 
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Chronic Rejection 

 Depending on the mechanisms and timeframe of the rejection episode, rejection can be 

categorized into many different types. Acute and chronic rejection are categorized based on the time 

rejection occurred after the transplant. Acute rejection occurs within the first three months to a year 

after the transplant, while chronic rejection can occur after the first year of the transplant. Chronic 

rejection is often irreversible and can lead to graft failure or death (Hunt & Saab, 2012). 

Immunosuppressors are effective in decreasing the risk of acute rejection but not against chronic 

rejection. By five years post-transplant, chronic rejection affects up to 50% of kidney transplants 

(Gautreaux, 2017). Since chronic rejection is often asymptomatic and occurs over an extended period, 

there is currently no medicine to date that can treat chronic rejection symptoms (Understanding 

Transplant Rejection | Stony Brook Medicine, n.d.). The common treatment method is to increase the 

dosage of immunosuppressive drugs, which can exacerbate the dangerous side effects. Therefore, it is 

imperative to understand and target the mechanisms involved in chronic rejection to maintain long-

term allograft health. 

MHC-Peptide Presentation  

Early chronic organ rejection is primarily caused by T-cell-mediated rejection (Chong, 2020). T-

cells are a type of immune cell that plays a crucial role in identifying and eliminating foreign cells. When 

T-cells misinterpret donated organ cells as foreign, it can lead to T-cell activation and an attack on the 

transplanted organ. MHC peptide presentation plays a vital role in T-cell activation and can lead to 

developing strategies to prevent transplant rejection. The major histocompatibility complex (MHC) is a 

group of genes that code for MHC molecules found on the surface of cells. These molecules play a vital 

role in the immune system’s ability to distinguish between “self” and “non-self” (King, 2007). There are 

two main types of MHC molecules: MHC class I and MHC class II molecules. While MHC class I molecules 
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are found on the surface of all nucleated cells, MHC class II molecules are only present on antigen-

presenting cells (Lakna, 2018). Nonetheless, the main function of all MHC molecules is to bind peptide 

fragments derived from pathogens (or donor cells) and display them on the cell surface for recognition 

by the appropriate T cells (Hewitt, 2003). If T-cell receptors (TCRs) recognize a peptide from the 

transplanted organ on an MHC molecule, it activates, starting the immune response against the 

transplanted organ and initiating rejection. 

Indirect Allorecognition 

Antigen presentation can occur through direct or indirect pathways. 

However, chronic rejection is primarily mediated by the indirect pathway (Siu 

et al., 2018). As donor organ cells die and are replenished, the damaged 

donor cells shed MHC molecules. The MHC molecules are taken up by the 

recipient antigen-presenting cells (APCS), which break down donor MHC 

molecules into smaller peptide fragments (Mak et al., 2014). These peptides 

are loaded onto recipient MHC class II molecules and are presented on the 

surface of recipient APCs (SITNFlash, 2012). If there is a significant mismatch 

in the peptides displayed and the recipient’s MHC molecules, naïve T-cells 

may recognize the peptide complex displayed on APCs as foreign, starting an 

immune attack against the donor organ (Mak et al., 2014).  

 

Tissue Typing and Immune Profiling 

 When looking for organ matches, doctors perform Human Leukocyte Antigen (HLA) typing to 

understand the similarity in antigens between the donor and the recipient. The HLA is a group of genes 

that provide instructions to make antigens present on the surface of cells (Manski et al., 2019). Six 

Figure 1: Damaged donor cells shed 
MHC molecules into the graft and 

surrounding tissue. These molecules are 
broken down into donor-derived 
peptides, which are taken up by 

recipient antigen-presenting cells 
(APCs) and are presented in MHC class 
II. Because the peptide is derived from 
a molecule that is not expressed in the 

recipient, the MHC-peptide on the 
surfaces of these APCs is seen as “non-
self” by recipient T-cells. These T cells 

activate and attack the graft (Mak et al., 
2014; SITNFlash, 2012). 
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specific HLAs are looked for, and a higher similarity results in a likely chance of an organ match 

(Matching and Compatibility | Transplant Center | UC Davis Health, n.d.). However, HLA genes are the 

most polymorphic genes in the human genome. This means that HLAs have many different allele 

combinations, and their variant alleles have high degrees of sequence similarity. The similarity can be 

difficult to establish with current serological and low-resolution tests (Dasgupta, 2016). Therefore, 

understanding the exact differences in HLAs between the donor and recipient can result in a better 

treatment method that is personalized and accurate for the recipient. One way to do so is with machine 

learning. 

Benefits of Machine Learning 

Machine learning is a subset of artificial intelligence that uses statistical techniques that allow 

computer systems to automatically learn and develop from experience without being explicitly 

programmed (Costa, 2019). Previous studies have employed machine learning techniques to sift through 

massive datasets of gene expression data. Machine learning algorithms can analyze data to identify 

patterns and establish relationships from complex datasets. For this project, machine learning would 

allow HLA sequence data to be used to make a prediction model. By training the model on datasets of 

HLA sequences and peptide binding affinities, the algorithm can predict these complexes with high 

accuracy, paving the way for personalized and targeted immunosuppression. There have been many 

studies that employ machine learning to predict organ rejection. However, those models focus on 

“whole” HLA mismatches, which do not account for HLA polymorphism or the peptide sequences. 

Therefore, by focusing on HLA sequences and peptides, a more accurate and robust model can be 

created to prevent organ rejection. This way, we can protect the patient and the organ from harm.  

Problem Statement 
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Chronic organ rejection affects about 50% of kidney transplants five years post-transplant. Due 

to chronic rejection occurring over a long period of time, there are limited methods to diagnose and 

treat chronic rejection. Even though Human Leukocyte Antigen (HLA) mismatches are the primary cause 

of rejection, HLA genes are very polymorphic, and current HLA typing methods do not account for the 

diverse amino acid variations within each allele that can initiate rejection. 

Objective 

 The objective is to make a machine learning model that can predict rejection and provide 

specific targets that will cause rejection, given donor and recipient HLA sequences. The model will work 

by predicting the MHC-peptide complex on the donor organ by focusing on the specific HLA allele 

mismatches. Ideally, this model will use mismatches to provide information on targets for personalized 

immunosuppression. 

Obj. 1a: Access the amino acid sequence of each HLA allele and align sequences to identify 

amino acid mismatches between given donor and recipient alleles at a specific locus. 

Obj. 1b: Finding solvent-accessible amino acids to filter amino acid mismatches to ones that 

have the highest probability of immunogenicity. 

Obj. 2: Generate donor-derived peptides based on the solvent-accessible amino acid  

 mismatches as 15 amino acid chain peptide fragments. 

Obj. 3: Filter peptides by considering the ones with the highest binding affinity to   

 recipient HLA class II alleles and ones. 

Obj. 4: Validate the model’s accuracy by testing the algorithm with HLA typing data from  

 known rejection and non-rejection donor and recipient samples. 

Obj 5: Create a binary classification machine-learning model that is trained on rejection   

 and no-rejection samples to find significant gene features. 

Hypothesis 
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Based on previous organ rejection prediction models, it is hypothesized that the proposed 

methodology will be successful in predicting rejection as it focuses on specific amino acids mismatched 

to predict MHC-peptide complexes that may initiate T-cell activation. By learning from current MHC-

peptide-predicting data sources and public repositories, the methodology results in accurate HLA 

mismatches and potential immunosuppressive targets. 

Section II: Methodology 

Role of Student vs. Mentor 

 I (the student) conducted all project development, research, testing, and analysis. My mentor 

guided me with the structure of written proposals and gave substantial feedback on technical 

documents and presentations. This project has had significant work contributed to it over the course of 

six months. 

Equipment and Materials 

Data Collection and Preprocessing: 

 HLA Protein Sequences. Various tools were used to obtain the data used in the machine-

learning model and the data analysis methods. The Immuno-Polymorphism Database (IPD-IMGT/HLA) 

version 3.55.0 from the European Bioinformatics Institute (EBI) was accessed through the database’s 

public FTP site hosted by the EBI. The database provides a central repository for sequences of HLA 

alleles, including the protein sequences in the FASTA format. HLA allele sequences were filtered to only 

include the commonly typed HLA loci: HLA‐A, ‐B, ‐C, ‐DRB1, ‐DRB3, ‐DRB4, ‐DRB5, −DQA1, ‐DQB1, ‐DPA1 

and ‐DPB1 (Hamed et al., 2018). The alleles were converted into field type two resolution, and 

duplicates were removed as higher resolution typing does not affect the amino acid sequence of the 

protein (Kramer et al., 2020).  
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Study Cohorts. To validate the model, two study cohorts were 

used. The STAR files were obtained by the United Network for Organ 

Sharing (U.N.O.S.), which include donor and recipient transplant data 

dated back to 1987. The large dataset was preprocessed, resulting in a 

small, manageable dataset with living kidney transplantations. The 

dataset contains past donor and recipient HLA alleles along with the 

rejection outcome. Chronic rejection was defined as rejection episodes 

that occur at least one year after the transplant (Justiz Vaillant & 

Mohseni, 2023). The inclusion and exclusion processing can be seen in 

Figure 2. 

HLA-Epi is another model that calculated the epitopic mismatch 

load between potential recipient-donor pairs. The HLA-Epi dataset 

contains donor and recipient HLA alleles along with their calculated 

compatibility scores (Geffard et al., 2022). Even though the model focuses on direct allorecognition, the 

compatibility scores can be used to validate the proposed model’s performance through regression 

models. Additionally, they have scores calculated by the PIRCHE-II model for the same donor and 

recipient alleles. The PIRCHE-II model is another algorithm to predict indirectly recognizable HLA 

epitopes Geneugelijk & Spierings, 2020). The PIRCHE-II model does not consider solvent-accessible 

mismatches. Therefore, the scores in the HLA-Epi dataset can be used to compare the performance of 

the proposed model with competitor models.   

Bioinformatic Servers: 

 Bioinformatic analysis servers were used to analyze and compare the amino acid sequences of 

donor and recipient HLA alleles. NetSurfP version 3.0 from the Danmarks Tekniske Universitet (DTU 
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Health Tech) was used to predict the surface accessibility of individual amino acids in an amino acid 

sequence. Additionally, NetMHCIIpan version 4.1 from DTU Health Tech was used to predict the binding 

affinity and eluted ligand of donor HLA peptides to recipient HLA class II alleles. 

Software and Software Packages: 

 Google Colaboratory was used to code the machine learning models, as it is a hosted Jupyter 

Notebook to write and execute Python code through the browser. Microsoft Excel was used to format 

the data in a table format to make it easier to upload as a data frame into Google Collab. The HLA 

Epitope Mismatch Algorithm (HLA-EMMA) was used to validate amino acid mismatch results. Python 

libraries such as “Pandas” were used to import Excel data files, and “NumPy” was used to support the 

large arrays in the data files. Additionally, “MatplotLib” was used to visualize data, and “Seaborn” was 

used to create a confusion matrix. Lastly, the Statistical Analysis System (SAS) software will be used to 

convert the U.N.O.S. data files into a readable Excel file. 

Accessing Amino Acid Sequences 

 A sample donor and recipient file was downloaded from the HLA-EMMA software. The donor 

and recipient alleles were reported in the second field typing resolution. However, the IPD/IMGT-HLA 

database reports most HLA alleles in the fourth field typing resolution (Casey, 2023). Therefore, if an 

allele was A*01:01, the FASTA sequence for A*01:01:01:01 was used, as they are an equivalent 

representation of the same allele located on the HLA-A locus. The FASTA sequence was input into a 

Google Colaboratory file that would find the amino acid mismatches. 

Modified Needleman-Wunsch Algorithm 

 The IPD/IMGT-HLA database has allele sequences in different lengths. However, to find the 

amino acid mismatches, the sequences must be of equal length to be vertically aligned. Therefore, a 
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modified Needleman-Wunsch algorithm was used to make the 

sequences have the same lengths, allowing for mismatches to be 

found. The Needleman-Wunsch algorithm is a common global 

alignment method that uses a scoring matrix and dynamic 

programming to find the optimal alignment between two 

sequences (Mittal, 2024). The traditional algorithm adds gaps 

between the protein sequences, representing the evolutionary 

changes between the two sequences. As seen in Figure 3, the gaps 

attempt to optimize the alignment score and reveal any mutations, 

insertions, or deletions that may have occurred over time 

(NandiniUmbarkar, 2020). However, to find the amino acid 

mismatches between the donor and recipient FASTA sequences, 

there should not be any additional modifications to the sequence. Therefore, the model uses a similar 

scoring system but has a very high gap penalty. The gap penalty is a negative score that is added to the 

score any time a gap is inserted in the sequences (Mount, 2008). By having a high negative gap penalty, 

the overall score will significantly decrease. To have a high alignment score, the sequences will not be 

modified.  

Aligning Amino Acid Sequences and Identifying Mismatches 

 The Python programming software was used to compare a single donor allele sequence to the 

respective recipient allele sequence using Google Colaboratory. This way, amino acid mismatches were 

donor amino acids that are not present in either recipient alleles, as they have a lower chance of 

initiating an immune response. The program goes through each position to store the mismatches. The 
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mismatches were validated with HLA-EMMA, and the code was modified to confirm the results. HLA-

EMMA is a software that finds mismatches between donor and recipient alleles. 

Finding Solvent-Accessible Amino Acid Mismatches 

 Solvent-accessible amino acids are amino acids in a protein that are exposed to the solvent 

surrounding the protein. Solvent accessibility is an important structural property of proteins because 

active sites are often located on the surfaces of proteins (Savojardo et al., 2021). These amino acids 

have a much higher chance of being recognized by T-cells. Therefore, focusing on solvent-accessible 

amino acid mismatches can provide specific peptides that have a greater chance of causing rejection. 

NetSurfP was used to predict the solvent accessibility for each amino acid in the donor alleles, and the 

solvent-accessible amino acids, which were also amino acid mismatches were stored for peptide 

analysis. 

Generating Donor-Derived Peptide Chains 

 NetMHCIIpan is a server that generates peptides and predicts the binding strength of those 

peptides to an MHC-II molecule. The donor alleles were used for peptide sequence generation, and the 

molecules were input as the recipient MHC class II molecules. Because MHC class II molecules bind to 

peptides that have a length of 15 amino acids, the donor-derived peptides were 15 amino acids in length 

(Schafer et al., 1995). The binding affinity and the eluted ligand were found for all generated peptides. 

Filtering Peptides With Binding Affinity and Eluted Ligand 

 The eluted ligand score is the likelihood of a peptide being an MHC ligand, while binding affinity 

is the strength of attraction between the peptide and the molecule (Wongklaew et al., 2024). 

NetMHCIIpan reports the strongest binding peptide sequences to each MHC class II molecule. Out of 
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those, the peptides containing the solvent-accessible amino acid mismatches were stored as the most 

significant peptides that may cause rejection. 

Machine-Learning Model Training and Testing: 

 After the model is completed, the HLA-Epi data will be used to create regression models 

between the predicted compatibility score and the true compatibility score. The donor and recipient 

samples be run through the model, and the predicted scores will be recorded. Then, the true scores of 

the respective samples will be matched with the predicted score from the model. Regression models will 

be made to validate the model’s ability to accurately predict a score for a sample on a scale. The model 

will be improved until it reaches an accuracy of at least 70% or greater. If needed, feature selection 

algorithms such as random forest will be used to find the most influential HLA alleles, which can improve 

the accuracy of the regression models.  
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Two Samples and Paired T-tests 

In this case, a 2-sample t-test can measure the difference between the means of two different 

groups. Thus, a t-test was used to measure the difference in the means of the rejection and non-

rejection scores. Performing this test yields a t-statistic of 6.269 and a p-value of 1.646e-9. This is below 

the commonly accepted threshold 𝛼 ≤ 0.05, thus it can be concluded that there is a statistically 

significant difference in mean scores between the rejection and non-rejection groups. 

Additionally, a paired t-test can be used to measure the mean difference between paired data 

samples. A paired t-test was used to measure the difference between the predicted and actual 

compatibility scores in the regression models. Performing this test yields a t-statistic of 1.918 and a p-

value of 0.057. The p-value is above the commonly accepted threshold. Thus, it can be concluded that 

there is no statistically significant difference between the predicted scores and the actual scores. 

Section III: Results 

 The MHC-peptide prediction methodology was carried out using HLA-B locus alleles. Each 

classification model was tested on an unseen dataset, from which certain accuracy metrics were 

obtained.  

U.N.O.S. Dataset and Scores 

 After the UNOS dataset was processed, a random sample of 250 donor and recipient HLA allele 

combinations was split into rejection and no-rejection groups. Chronic rejection was classified as 

rejection that occurred at least one year after the initial transplant. The samples were run through the 

Figure 4: Box and Whisker plots for predicted total peptide 
score from model in rejection and no-rejection groups. 

Green symbol represents the mean score of both groups. 
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model and the output score was recorded. Box and 

whisker plots were created to compare the scores 

between the rejection and no-rejection groups, which 

can be seen in Figure 4. 

MHC-Peptide Prediction Results 

 Following a similar format as HLA-EMMA, each 

donor allele was compared to both recipient alleles. For 

the sample test, the recipient had HLA-B locus alleles 

B*08:01 and B*40:02, while the donor had alleles B*07:02 and B*35:03. As seen in Table 1, there are 

multiple mismatches between both donor alleles and recipient alleles. However, only some were 

predicted to be solvent accessible by NetSurfP. The B*35:03 donor allele had many more amino acid 

mismatches compared to the B*07:02 allele. 
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After noting down the solvent-accessible 

amino acid mismatches, the donor allele B*07:02 

sequence was inputted into NetMHCIIpan, and the 

recipient MHC class II alleles were entered as the MHC 

molecules to calculate the binding affinity and eluted 

ligand scores. A higher binding affinity and eluted 

ligand score means the peptide has a higher chance of 

binding to the MHC molecule. The recipient’s HLA class 

II alleles were DRB1*11:01, DRB1*13:01, DRB3*02:01, 

DQB1*03:01, DQB1*06:03, DQA1*01:03, DQA1*05:05, 

DPB1*04:01, DPB1*105:01, and DPA1*01:03. Four peptides containing the solvent-accessible 

mismatches were predicted to bind to the DQA1*01:03-DQB1*03:01 molecule, five peptides were 

predicted to bind to the DQA1*05:05-DQB1*06:03 molecule. 

A similar procedure was applied to the second donor allele. However, as Figures 6 and 7 show, 

there were many more peptides that contained solvent-accessible mismatches for the B*35:03 allele 

compared to the B*07:02 allele.  

Figure 5: Binding affinity and eluted ligand scores of strong 
peptide sequences containing solvent-accessible mismatched 

amino acids. Peptides were generated from HLA-B locus donor 
allele B*07:02. Left of the chart is peptide data for HLA class II 

recipient DQA1*01:03-DQB1*03:01 molecules, and right is 
peptide data for binding on HLA class II recipient DQA1*05:05-

DQB1*06:03 molecules. 

Figure 6: Binding affinity and eluted ligand scores of strong 
peptide sequences containing solvent-accessible mismatched 

amino acids. Peptides were generated from HLA-B locus donor 
allele B*35:03. Peptide data for binding to HLA class II recipient 

DQA1*01:03-DQB1*03:01 molecules. 

Figure 7: Binding affinity and eluted ligand scores of strong 
peptide sequences containing solvent-accessible mismatched 

amino acids. Peptides were generated from HLA-B locus 
donor allele B*35:03. Peptide data for binding to HLA class II 

recipient DQA1*05:05-DQB1*06:03 molecules. 
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Regression Model Scatterplot 

 Regression models were constructed based on the predicted and true scores of the samples in 

the HLA-Epi dataset. Ridge regression, random forest regression, linear regression, lasso regression, and 

polynomial regression were created. The performance of each regression model can be seen in 

Appendix C. As regression models cannot be measured in terms of “accuracy,” the R^2 value was used 

to gauge how well the predicted scores could match the true scores. As the initial R^2 values were well 

below the desired 70%, a random forest feature selection algorithm was used to identify the importance 

of specific HLA allele types. Weightages were assigned based on their importance, with a greater weight 

being assigned to more influential allele types, based on the results of the feature selection algorithm. 

The final R^2 value of the Ridge Regression model was 0.723. 

  

Section IV: Discussion 

As chronic organ rejection is a dangerous and prevalent medical condition after a transplant, a 

model was created that could identify minute differences between donor and recipient HLA alleles to 

Figure 8: Scatter Plot of the ridge regression model before 
adding weightages to allele types. The scatter plot had an R^2 

value of 0.626. 

Figure 9: Scatter Plot of the ridge regression model after 
conducting random forest feature selection. The new scatter 

plot has an R^2 value of 0.723. 
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predict rejection and find targets for precise immunosuppression. The amino acid differences that cause 

rejection are different for every transplant, and so should the medications.  

Based on these findings, it can be determined that predicting MHC peptide complexes can be 

used to predict rejection. Focusing on amino acid differences between donor and recipient sequences 

provided a more accurate understanding of the specific peptides that had a higher chance of 

immunogenicity. Additionally, keeping unique mismatches was important in reducing the number of 

features the model would use. For example, all the mismatches from Table 1 contained the amino acid 

mismatches in the donor that were not present in either of the recipient alleles, which allowed only 

significant mismatches to surface, which influenced the peptide selection. While NetMHCIIpan showed 

multiple strong binding peptides, only the ones that contained solvent-accessible mismatches were 

stored. Out of all the string peptides, most of them contained solvent-accessible peptides. Additionally, 

multiple strong peptides contained many of the same amino acid positions. For example, in Figure 2, 

QRKWEAAREAEQRRA started at position 87, and TQRKWEAAREAEQRR started at position 86. After 

looking at the solvent-accessible amino acid mismatches, it was evident that these two peptides 

contained two solvent-accessible mismatches. Specifically, at positions 93 and 94. Similarly, peptide 

RNTQIYKAQAQTDRE begins at position 167, and peptide NTQIYKAQAQTDRES begins at position 168, and 

contains a solvent-accessible mismatch at position 176. A similar result was seen in the donor-derived 

peptides in donor allele B*35:03. However, this allele had many more strong peptides that contained 

solvent-accessible mismatches. It is probable that because of the higher mismatches, there was a higher 

number of strong peptides, showing evidence for this allele being more immunogenic than the second 

donor allele B*07:02. In both cases, many of the peptides repeated for both the recipient alleles, which 

again shows evidence for using peptides to find immunosuppressive targets as repeated peptides have a 

higher chance of initiating an immune response. 
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Additionally, the results from the UNOS dataset shows a clear correlation between higher scores 

corresponding to rejection samples, and lower scores corresponding to non-rejection samples. 

Additionally, performing a two-sample t-test resulted in the difference in mean scores between the 

groups as statistically significant. The significance reinforces the model’s ability to present different 

scores based on the rejection outcome. As peptides are counted for the targets, a greater number of 

peptide possibilities corresponds to a greater chance of rejection. However, as everyone has at least 

some difference in their DNA, it is more beneficial to understand the compatibility score of a specific 

recipient and donor combination, as the box and whisker plots have a significant overlap in scores. 

Therefore, comparing the model’s scores to already tested compatibility scores can give us more insight 

into the model’s accuracy. 

Regression models were created and analyzed to find the correlation between the model’s 

scores and true compatibility scores. The ridge regression model had performed the best, with an R^2 

value of 0.626. However, to get the desired accuracy, finding the most influential HLA alleles can aid in 

making the model more accurate. By finding the most influential HLA allele types, a greater weight can 

be added to those alleles. After conducting a random forest feature selection, HLA-A and HLA-B were 

found to be the most important HLA types. By giving those alleles the greatest weightages, the R^2 

value increased to 0.723. The increase in accuracy shows evidence for those alleles being the most 

influential in the rejection outcome, and clinicians should make an effort to match donor and recipients 

with a high similarity in those alleles. 

In the end, all the objectives were accomplished, as the result presented peptides, suggesting 

that they can be used as immunosuppressive targets. Potential limitations would include testing the 

model clinically. However, validating our results with current models, such as HLA-EMMA can provide 

more confidence in our methods and results. 
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Future Research  

Future research would include creating models that could support other organ transplants, such 

as heart, lung, or liver. Additionally, a similar model could be created by focusing on the direct pathway 

or antibody-mediated rejection. There is also work that can be done to optimize the machine learning 

algorithms, including adding more features or testing the model with external datasets. Similarly, 

training the model with more patient information, such as age, weight, and family history, could 

potentially improve the model by using more patient features. These studies could improve donor 

selection and decrease the need for immunosuppressors. In short, the endless future research 

opportunities have the potential to revolutionize the healthcare industry from its current state today. 

 

Section V: Conclusion 

 The ultimate objective of this project was to create a machine-learning model that can predict 

the risk of rejection, given donor and recipient HLA sequences, by finding the most significant peptides. 

Amino acid sequence data was obtained from the IPD/IMGT-HLA database, and a sample donor and 

recipient HLA sequence file was obtained from HLA-EMMA. Using Google Colab, the amino acid 

mismatches were identified, and NetSurf P was used to find the solvent-accessible mismatches. These 

mismatches have a higher chance of being recognized by recipient T-cells because they are exposed to 

the solvent in the peptide. Then, NetMHCIIpan was used to generate donor-derived peptides and 

calculate the binding affinity to the recipient alleles. Strong binding peptides that contained the solvent-

accessible peptides were stored as the peptides that have the highest chance of being immunogenic. 

After analyzing the results, it was evident that there was a correlation between solvent-accessible 

mismatches and the number of strong peptides that were present, with a greater number of strong 

peptides correlating with a higher chance for rejection. 
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Additionally, many of the peptide sequences had overlapping positions or were in the sequence 

region with multiple amino acid mismatches. For example, in the donor allele sequence B*35:03, the 

peptide sequence TQFVRFDSDAASPRT was predicted to strongly bind to multiple recipient MHC 

molecules. Additionally, all of the peptides in the donor allele sequence B*07:02 predicted to bind to the 

recipient were extremely similar, having moved one or two amino acid positions in the sequence. This 

provides evidence to support the conclusion that similar peptide sequences are likely to cause rejection, 

as they have a higher chance of binding to multiple recipient alleles. Validating the results with HLA-

EMMA supports the proposed methodology, and the model can be improved in the future by including 

more features. The amino acid differences that cause rejection are different for every transplant, and so 

should the medications. With this model, we can not only keep the organ safe, but keep the patient 

healthy throughout their life. 

  



Analyzing HLA Sequences to Prevent Organ Rejection            Bodangi  23 

 

Section VI: References 

Azzi, J. R., Sayegh, M. H., & Mallat, S. G. (2013). Calcineurin Inhibitors: 40 Years Later, Can’t Live Without 

…. The Journal of Immunology, 191(12), 5785–5791. https://doi.org/10.4049/jimmunol.1390055  

Buhl, N. (2023, August 8). Mitigating Model Bias in Machine Learning | Encord. Encord.Com.  

https://encord.com/blog/reducing-bias-machine-learning/  

Chen, H., Yang, J., Zhang, S., Qin, X., Jin, W., Sun, L., Li, F., & Cheng, Y. (2019). Serological cytokine 

profiles of cardiac rejection and lung infection after heart transplantation in rats. Journal of 

Cardiothoracic Surgery, 14(1), 26. https://doi.org/10.1186/s13019-019-0839-5  

Chouhan, K. K., & Zhang, R. (2012). Antibody induction therapy in adult kidney transplantation: A 

controversy continues. World Journal of Transplantation, 2(2), 19–26. 

https://doi.org/10.5500/wjt.v2.i2.19  

Costa, C. D. (2019, August 26). What Is Machine Learning & Deep Learning? Medium. 

https://medium.com/@clairedigitalogy/what-is-machine-learning-deep-learning-7788604004da  

Dasgupta, A. (2016). Chapter 2 - Limitations of immunoassays used for therapeutic drug monitoring of 

immunosuppressants. In M. Oellerich & A. Dasgupta (Eds.), Personalized Immunosuppression in 

Transplantation (pp. 29–56). Elsevier. https://doi.org/10.1016/B978-0-12-800885-0.00002-3  

Ding, M., He, Y., Zhang, S., & Guo, W. (2021). Recent Advances in Costimulatory Blockade to Induce 

Immune Tolerance in Liver Transplantation. Frontiers in Immunology, 12. 

https://doi.org/10.3389/fimmu.2021.537079  

Gautreaux, M. D. (2017). Chapter 17 - Histocompatibility Testing in the Transplant Setting. In G. Orlando, 

G. Remuzzi, & D. F. Williams (Eds.), Kidney Transplantation, Bioengineering and Regeneration 

(pp. 223–234). Academic Press. https://doi.org/10.1016/B978-0-12-801734-0.00017-5  

Grinyo, J. M. (2013). Why Is Organ Transplantation Clinically Important? Cold Spring Harbor Perspectives 

in Medicine, 13(11). https://doi.org/10.1101/cshperspect.a014985  

https://doi.org/10.4049/jimmunol.1390055
https://encord.com/blog/reducing-bias-machine-learning/
https://doi.org/10.1186/s13019-019-0839-5
https://doi.org/10.5500/wjt.v2.i2.19
https://medium.com/@clairedigitalogy/what-is-machine-learning-deep-learning-7788604004da
https://doi.org/10.1016/B978-0-12-800885-0.00002-3
https://doi.org/10.3389/fimmu.2021.537079
https://doi.org/10.1016/B978-0-12-801734-0.00017-5
https://doi.org/10.1101/cshperspect.a014985


Analyzing HLA Sequences to Prevent Organ Rejection            Bodangi  24 

 

Hamed, C. T., Meiloud, G., Veten, F., Hadrami, M., Ghaber, S. M., Boussaty, E. C., Habti, N., &  

Houmeida, A. (2018). HLA class I (-A, -B, -C) and class II (-DR, -DQ) polymorphism  

in the Mauritanian population. BMC Medical Genetics, 19, 2.  

https://doi.org/10.1186/s12881-017-0514-4  

Harlan, D. M., & Kirk, A. D. (1999). The Future of Organ and Tissue Transplantation: Can T-Cell 

Costimulatory Pathway Modifiers Revolutionize the Prevention of Graft Rejection? JAMA, 

282(11), 1076–1082. https://doi.org/10.1001/jama.282.11.1076  

Hunt, D., & Saab, S. (2012). Post–Liver Transplantation Management - ScienceDirect. In Zakim and 

Boyer’s Hepatology (Sixth, pp. 869–882). 

https://www.sciencedirect.com/science/article/abs/pii/B9781437708813000498  

Iglesias, M., Brennan, D. C., Larsen, C. P., & Raimondi, G. (2022). Targeting inflammation and immune 

activation to improve CTLA4-Ig-based modulation of transplant rejection. Frontiers in 

Immunology, 13. https://doi.org/10.3389/fimmu.2022.926648  

Ingulli, E. (2010). Mechanism of cellular rejection in transplantation Pediatric Nephrology, 25. 

https://doi.org/10.1007/s00467-008-1020-x  

Kelly, J. (2022, April 27). End of anti-rejection transplant drugs? A clinical trial at Hume-Lee hopes so. 

VCU Health. https://www.vcuhealth.org/news/end-of-anti-rejection-transplant-drugs-a-clinical-

trial-at-hume-lee-hopes-so  

King, T. C. (2007). 2 - Inflammation, Inflammatory Mediators, and Immune-Mediated Disease. In T. C. 

King (Ed.), Elsevier’s Integrated Pathology (pp. 21–57). Mosby. https://doi.org/10.1016/B978-0-

323-04328-1.50008-5  

Kirk, A. D., Harlan, D. M., Armstrong, N. N., Davis, T. A., Dong, Y., Gray, G. S., Hong, X., Thomas, D., 

Fechner, J. H., & Knechtle, S. J. (1997). CTLA4-Ig and anti-CD40 ligand prevent renal allograft 

https://doi.org/10.1186/s12881-017-0514-4
https://doi.org/10.1001/jama.282.11.1076
https://www.sciencedirect.com/science/article/abs/pii/B9781437708813000498
https://doi.org/10.3389/fimmu.2022.926648
https://doi.org/10.1007/s00467-008-1020-x
https://www.vcuhealth.org/news/end-of-anti-rejection-transplant-drugs-a-clinical-trial-at-hume-lee-hopes-so
https://www.vcuhealth.org/news/end-of-anti-rejection-transplant-drugs-a-clinical-trial-at-hume-lee-hopes-so
https://doi.org/10.1016/B978-0-323-04328-1.50008-5
https://doi.org/10.1016/B978-0-323-04328-1.50008-5


Analyzing HLA Sequences to Prevent Organ Rejection            Bodangi  25 

 

rejection in primates. Proceedings of the National Academy of Sciences of the United States of 

America, 94(16), 8789–8794. https://doi.org/10.1073/pnas.94.16.8789  

Lewis, A., Koukoura, A., & Tsianos, Georgios-Ioannis. (2021). Organ donation in the US and Europe: The 

supply vs demand imbalance - ScienceDirect. Transplantation Reviews, 35(2). 

https://doi.org/10.1016/j.trre.2020.100585  

Mahmud, N., Klipa, D., & Ahsan, N. (2010). Antibody immunosuppressive therapy in solid-organ 

transplant. MAbs, 2(2), 148–156. https://doi.org/10.4161/mabs.2.2.11159  

Manski, C. F., Tambur, A. R., & Gmeiner, M. (2019). Predicting kidney transplant outcomes with partial 

knowledge of HLA mismatch. Proceedings of the National Academy of Sciences, 116(41), 20339–

20345. https://doi.org/10.1073/pnas.1911281116  

Matching and Compatibility. (n.d.). UC Davis Health. Retrieved November 8, 2023, from 

https://health.ucdavis.edu/transplant/livingkidneydonation/matching-and-compatibility.html  

Mittal, A. (2024, March 12). Sequence Alignment and the Needleman-Wunsch Algorithm. Analytics 

Vidhya. https://medium.com/analytics-vidhya/sequence-alignment-and-the-needleman-

wunsch-algorithm-710c7b1a23a  

Mota, A. P. L., Vilaça, S. S., das Mercês, F. L., de Barros Pinheiro, M., Teixeira-Carvalho, A., Silveira, A. C. 

O., Martins-Filho, O. A., Gomes, K. B., & Dusse, L. M. (2013). Cytokines signatures in short and 

long-term stable renal transplanted patients. Cytokine, 62(2), 302–309. 

https://doi.org/10.1016/j.cyto.2013.03.001  

Mount, D. W. (2008). Using gaps and gap penalties to optimize pairwise sequence alignments. CSH 

Protocols, 2008, pdb.top40. https://doi.org/10.1101/pdb.top40  

NandiniUmbarkar. (2020, October 12). Needleman-Wunsch Algorithm. Medium. 

https://medium.com/@nandiniumbarkar/needleman-wunsch-algorithm-7bba68b510db 

https://doi.org/10.1073/pnas.94.16.8789
https://doi.org/10.1016/j.trre.2020.100585
https://doi.org/10.4161/mabs.2.2.11159
https://doi.org/10.1073/pnas.1911281116
https://health.ucdavis.edu/transplant/livingkidneydonation/matching-and-compatibility.html
https://medium.com/analytics-vidhya/sequence-alignment-and-the-needleman-wunsch-algorithm-710c7b1a23a
https://medium.com/analytics-vidhya/sequence-alignment-and-the-needleman-wunsch-algorithm-710c7b1a23a
https://doi.org/10.1016/j.cyto.2013.03.001
https://doi.org/10.1101/pdb.top40
https://medium.com/@nandiniumbarkar/needleman-wunsch-algorithm-7bba68b510db


Analyzing HLA Sequences to Prevent Organ Rejection            Bodangi  26 

 

Organ, Eye and Tissue Donation Statistics. (n.d.). Donate Life America. Retrieved November 8, 2023, 

from https://donatelife.net/donation/statistics/  

Organ Rejection after Renal Transplant. (n.d.). Columbia Surgery. Retrieved November 8, 2023, from 

https://columbiasurgery.org/kidney-transplant/organ-rejection-after-renal-transplant  

Reits, E., & Neefjes, J. (2022). HLA molecules in transplantation, autoimmunity and infection control: A 

comic book adventure. Hla, 100(4), 301–311. https://doi.org/10.1111/tan.14626  

Roberts, J. (2023, April 28). Transplant rejection. MedlinePlus Medical Encyclopedia. 

https://medlineplus.gov/ency/article/000815.htm  

Signs of Kidney Transplant Rejection. (n.d.). Cleveland Clinic. Retrieved November 25, 2023, from 

https://my.clevelandclinic.org/health/diseases/21134-kidney-transplant-rejection  

Trambley, J., Bingaman, A. W., & Lin, A. (1999). Asialo GM1+ CD8+ T cells play a critical role in 

costimulation blockade–resistant allograft rejection - PMC. The Journal of Clinical Investigation, 

104(12). https://doi.org/10.1172/JCI8082  

Understanding Transplant Rejection. (n.d.). Stony Brook Medicine. Retrieved November 8, 2023, from 

https://www.stonybrookmedicine.edu/patientcare/transplant/rejection  

Viatte, S. (2023, September 8). Human leukocyte antigens (HLA): A roadmap - UpToDate. Uptodate. 

https://www.uptodate.com/contents/human-leukocyte-antigens-hla-a-roadmap/print  

Vijayan, S., Sidiq, T., Yousuf, S., van den Elsen, P. J., & Kobayashi, K. S. (2019). Class I transactivator,  

NLRC5: a central player in the MHC class I pathway and cancer immune surveillance.  

Immunogenetics, 71(3), 273–282. https://doi.org/10.1007/s00251-019-01106-z  

Why Is Organ Donation Important? (2022, March 29). INTEGRIS Health. 

https://integrisok.com/resources/on-your-health/2022/march/why-is-organ-donation-

important  

 

https://donatelife.net/donation/statistics/
https://columbiasurgery.org/kidney-transplant/organ-rejection-after-renal-transplant
https://doi.org/10.1111/tan.14626
https://medlineplus.gov/ency/article/000815.htm
https://my.clevelandclinic.org/health/diseases/21134-kidney-transplant-rejection
https://doi.org/10.1172/JCI8082
https://www.stonybrookmedicine.edu/patientcare/transplant/rejection
https://www.uptodate.com/contents/human-leukocyte-antigens-hla-a-roadmap/print
https://doi.org/10.1007/s00251-019-01106-z
https://integrisok.com/resources/on-your-health/2022/march/why-is-organ-donation-important
https://integrisok.com/resources/on-your-health/2022/march/why-is-organ-donation-important


Analyzing HLA Sequences to Prevent Organ Rejection            Bodangi  27 

 

Section VII: Appendices 

Appendix A: Limitations and Assumptions 

Limitations: 

1. Classification models were tested and trained using the same dataset as data was limited. 

2. The researcher could not legally test or confirm the results in a clinical setting. 

Assumptions: 

1. The IPD/IMGT-HLA database is accurate. 

2. The HLA-EMMA sample donor and recipient HLA sequence is accurate. 

3. The trends observed are predictive of the future. 

 

Appendix B: Model Github Repository and Web Application Links 

The full source code for the model and related files can be found at the GitHub repository: 

https://github.com/samhithabodangi/Organ-Rejection-Model. The final web application for PIPSA can 

be found at the GitHub repository: https://github.com/samhithabodangi/PIPSA-Model  

 

Appendix C: Decision Matrix Comparing Compatibility Score Regression Models 

https://github.com/samhithabodangi/Organ-Rejection-Model
https://github.com/samhithabodangi/PIPSA-Model
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Appendix D: Compatibility Score Regression Flow Chart 

 


